Utilization of bone marrow-derived endothelial cell precursors in spontaneous prostate tumors varies with tumor grade.
نویسندگان
چکیده
Id1 and Id3 genes are required for vascularization, growth, and metastasis of xenograft tumors. In Id-deficient mice, tumor transplantation and proangiogenic factors fail to mobilize and recruit circulating endothelial precursor cells (CEPs) and hematopoietic cells, leading to defective tumor angiogenesis in various models. To investigate the requirement of Id genes and bone marrow incorporation in spontaneous prostate tumors, we crossbred Id mutant mice with the transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. Id1-/- Id3+/- TRAMP mice display delayed tumor growth at 24 weeks compared with wild-type TRAMP mice. Id1 and Id3 were strongly expressed in the endothelial cells of poorly differentiated prostate adenocarcinoma but not in the vasculature of well-differentiated tumors, a finding that is corroborated in human prostate tumor samples. In Id-deficient TRAMP mice, the poorly differentiated tumors show extensive hemorrhage, whereas well-differentiated tumors exhibit none. Transplantation with Id wild-type bone marrow significantly reduced the hemorrhage in poorly differentiated prostate adenocarcinomas with bone marrow-derived endothelial cells contributing to 14% of the tumor blood vessels. However, in well-differentiated prostate adenocarcinomas, there was little evidence of bone marrow-derived endothelial cell incorporation. These differences in the expression of Id genes, the effects of Id loss, and the recruitment of bone marrow-derived endothelial precursor cells in tumor vasculature between well-differentiated and poorly differentiated prostate adenocarcinoma suggest that tumor angiogenesis varies depending on the tumor grade.
منابع مشابه
Bone marrow is a reservoir for proangiogenic myelomonocytic cells but not endothelial cells in spontaneous tumors.
The hypothesis that bone marrow-derived, circulating endothelial cells incorporate into tumor blood vessels is unresolved. We have measured the numbers of bone marrow-derived versus resident endothelial cells in spontaneous prostate cancers during different stages of tumor progression and in age-matched normal prostates. Bone marrow-derived endothelial cells were rare in dysplasia and in well d...
متن کاملVASCULAR BIOLOGY Brief report Bone marrow is a reservoir for proangiogenic myelomonocytic cells but not endothelial cells in spontaneous tumors
The hypothesis that bone marrow– derived, circulating endothelial cells incorporate into tumor blood vessels is unresolved. We have measured the numbers of bone marrow–derived versus resident endothelial cells in spontaneous prostate cancers during different stages of tumor progression and in age-matched normal prostates. Bone marrow–derived endothelial cells were rare in dysplasia and in well ...
متن کاملEndothelial progenitor cells do not contribute to tumor endothelium in primary and metastatic tumors.
Despite extensive research, the contribution of bone-marrow-derived endothelial progenitor cells (BM-EPC) to tumor angiogenesis remains controversial. In previous publications, the extent of incorporation of BM-EPCs into the endothelial cell (EC) layer in different tumor models has been reported as significant in some studies but undetectable in others. Here, we studied the differentiation of B...
متن کاملBiology of bone marrow-derived endothelial cell precursors.
Over the past decade, the old idea that the bone marrow contains endothelial cell precursors has become an area of renewed interest. While some still believe that there are no endothelial precursors in the blood, even among those who do, there is no consensus as to what they are or what they do. In this review, we describe the problems in identifying endothelial cells and conclude that expressi...
متن کاملInhibition of prostate tumor growth and bone remodeling by the vascular targeting agent VEGF121/rGel.
The pathophysiology of tumor growth following skeletal metastases and the poor response of this type of lesion to therapeutic intervention remains incompletely understood. Vascular endothelial growth factor (VEGF)-A and its receptors play a role in both osteoclastogenesis and tumor growth. Systemic (i.v.) treatment of nude mice bearing intrafemoral prostate (PC-3) tumors with the vascular ablat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 64 17 شماره
صفحات -
تاریخ انتشار 2004